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We calculate the site occupation probabilities of one-dimensional lattice gas 
models within the canonical and grand canonical ensembles. The appearing 
differences do not vanish if we increase the system size keeping the site energies 
discrete. In this way one can explain the surprising numerical results of 
Barszczak and Kutner. This effect in the single-site occupation number disap- 
pears in higher dimensions. 
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In lattice gas models (where double occupancy of the sites is prohibited) 
the motion of a given particle is strongly influenced by the distribution of 
the others. The effect of exclusion can be seen in many different processes. 
Here we want to mention only one of them, the Bardeen Herring backjump 
correlations~-4~: When a particle is exchanged with a~vacancy, there is a 
tendency for the reversed process, resulting in a backward correlation in 
the particle hopping. 

Recently Barszczak and Kutner (5) found surprising effects simulating 
simple lattice gas models. They found that the occupation probability does 
not follow the Fermi distribution, as one would expect. Looking for the 
best fit with a Fermi function, they always found a fitting temperature 
lower than the physical one and they did not see any serious size 
dependence of this effect. BK argued that these effects have their origin in 
the dynamics. 
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On the other hand, finite Fermi systems (e.g., fine metal particles or 
mesoscopic rings) have, in general, a nondegenerate energy level spectrum 
and, therefore, the thermal activation process could also be modeled by a 
one-dimensional lattice gas (forgetting for the moment about the spin 
degeneracy) where the different sites correspond to the energy levels. There- 
fore, there is a possibility of seeing the effects found in lattice gas models 
directly in the experiments. 

In the following we calculate the occupation numbers in the canonical 
ensemble. From the numerical method of ref. 5 it is physically appealing 
that they were simulating within the canonical ensemble, since the particle 
number was conserved. On the other hand, one can explicitly show, 
starting from the master equation for the distribution probability, that the 
equilibrium distribution belongs to this ensemble) 6~ 

The concrete model which we investigate is a one-dimensional non- 
interacting lattice gas. The Hamiltonian is simply 

N 
H= 2 Eft, (1) 

l=1 

where Ei denotes the energy belonging to site i and n~ is the occupation 
number (n~ = O, 1). The canonical partition function can be written as 

(K) 
Zcan = E e ,u (2) 

(n,} 

where the summation runs over all possible configurations {ni} at a given 
particle number K. This latter constraint can be expressed with the help of 
a b-function. Using an integral representation of the b-function 

f i ~  d~ e~UX (3a) 
b(x )  = fi _ ~  - ~  

one arrives at 

Zca n -- fi f d]l e Nf(~O (3b) 

with 

1 
f ( # ) =  -fl~P+~ 

N 
log{ 1 + exp[ - f l (E i -  #)]  } (3c) 

i=1 

where p = KIN is the average density. Following BK, we treat only the 
Ei = i case in detail and use an integral representation of the discrete sum 
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to get closed expressions for the different quantities. Using the trapezoidal 
rule, (7) one arrives at 

1 N 
~l= log{1 + exp[ - f ( i -  kt)] } 

= 1 fo  dx log{1 + e x p [ - f ( x -  #] } 

_ 12N log[1 + exp(f#)] + 1 log{ 1 + exp[ - f ( N -  #)] } 

exp[ - f l (qo-  #)] 
+ N { 1 + exp[ - f (q)  - #)] }2 (4) 

where cp e (0, N). We cited this expression explicitly here to see that the last 
correction term is of the order -~fl/N (<~ fiNN). This situation would not 
be changed by using a higher-order correction (i.e., it would always be 
proportional to l/N); only the numerical prefactor would be different. The 
reason for this fact is simply the discreteness of the levels even in the 
thermodynamic limit, i.e., that not Ei+ 1 -  E, 740 as i ~ oo. 

Now supposing 13# >> 1 and ( N -  # ) f  >> 1 (which is easily satisfied with 
finite p in the limit N-~ Go), one arrives at # o = K +  1/2, i.e., the chemical 
potential lies halfway between two energies. Generally it is satisfied in a 
finite system only at low temperatures~ In the exceptional half-filled case 
(p = 1/2) this equation always holds because of the particle-hole symmetry. 
Actually, only this latter case was investigated in ref. 5. 

In the grand canonical ensemble the occupation number would be 
given simply by nt= af(#o)/OEt. In the following we show that the canoni- 
cal treatment gives a different result, namely that the saddlepoint value/~0 
will be changed. The occupation probability at an arbitrary, but given site 
! is the ratio of the partition sum, when the site l is always occupied, and 
of Zo~. (The number of particles is, of course, the same, K, in both cases.) 
Performing the former calculation, one gets instead of Eq. (3b) 

1 N 

7(#) -- -f#P +N ~ log{1 +exp[-f(E,-#)]} 
i = l  

1 
- ~log{1 + e x p [ f ( E , -  #)] } (5) 

since the /th site is always occupied in this case. From the saddlepoint 
equation one has 

# ~ = K + � 8 9  ~ (6) 
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i.e., the new saddlepoint value #~ becomes smaller and the difference is the 
grand canonical occupation probability. Using the notation A = # o -  #t, we 
obtain the following coupled equations: 

( n t )  = exP(�89 - { 1 + exp[ /~( l -  #o + A)] } --1 

(7) 
A -~ = 1 + e x p [ - - f l ( l - # o + A ) ]  

Figure 1 compares this prediction with the exact result and with the 
Fermi distribution. (The numerical data of ref. 5 coincide with the exact 
ones. ) 

There are two points which have to be recognized. The first one is that 
Eq. (6) does not contain explicitly the size of the system. Consequently, the 
found deviations are not size effects, but result from the discreteness of the 
level spacing. 

The other point is that Eq. (6) holds only for sites where g~>> ~/N. In 
Eq. (4) we dropped the terms of order of magnitude ~/N; therefore, to be 
consistent, we have to keep only larger contributions. It means that 
exp[ /~( l -  p)]  >> 1 has to be satisfied. This constraint belongs clearly to the 
integral approximation of the sum, but the original sum cannot .be 
evaluated analytically. (The result of the numerical evaluation can be seen 
in the figure.) For l >  K one gets a lower occupation probability n than the 
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Fig. 1. The occupation probabilities as functions of the site index at /~= 1 for N= 18. 
(1) Canonical distribution; (2)Fermi distribution (dashed line); (3)approximation of Eq. (6) 
(stars). 
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original Fermi one n F and, therefore, ( n - n v ) > 0  has to be satisfied for 
lower site indices because of the particle number conservation (in this latter 
regime the above approximation does not work). 

As a conclusion, we can say that the canonical calculation recovers the 
numerical data of ref. 5, showing that the found deviation comparing the 
distribution function with the Fermi one has its origin not in the dynamics, 
but in the difference between the canonical and grand canonical ways of 
calculation. If we fitted the distribution with a Fermi function, then we got 
always a fitting temperature which was lower than the physical one. The 
reason for this is rather simple: calculating the occupation probability, one 
has to keep at least one particle sitting on the given site. This extra 
constraint means smaller fluctuations and it appears as a smaller fitting 
temperature. 

All the calculation concerning this temperature difference were done in 
one dimension. Naturally the question arises of whether one can also find 
similar effects in higher space dimensions. In d >  1 one has a saddlepoint 
equation of the form pN d= y +  a y  ~ + ..., where N denotes the linear 
size. If we follow the presented calculation, then corrections appear as 
products of the lower-dimensional corrections. The contribution of the 
extra summand in Eq. (3) is at most ~ N  and is negligible for d >  1 com- 
pared with #d. (In one dimension it results in a finite shift in #.) It means 
that there is a "natural" fluctuation of p, which is larger than the one 
caused by the extra constraint if d >  1. Therefore, one cannot see similar 
effects in the particle distribution. However, the situation is different if one 
is interested in the probability of the simultaneous occupation of a ( d -  1)- 
dimensional subsystem. 

In real physical systems the average energy level spacing and the 
system size are connected; therefore, one finds the above behavior as a 
finite-size effect. In computer simulations and model calculations they can 
be separated. The calculation presented above and the simulation in ref. 5 
show that the difference found between the two ensembles is due to the 
discrete level spacing and not to the finite size. 

Generally one expects the same value for thermodynamic averages 
upon calculating within the different ensembles. This statements holds only 
for quantities which are averages over the system (e.g., specific heat, 
energy, etc.) or for quantities which are local variables, but have a uniform 
distribution within the system, i.e., can be expressed as averages over the 
different subsystems. In the above case we have a strongly nonuniform dis- 
tribution (Fermi-like) and, therefore, it is not really surprising that local 
variables which are strongly influenced by fluctuations show different 
behavior. 
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A C K N O W L E D G M E N T S  

Discuss ions  wi th  R. K u t n e r  and  K. K e h r  are  gra teful ly  a c k n o w l e d g e d .  
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